
Lisp in Summer Projects Submission

Submission Date 2013-10-03 12:39:10

Full Name Ryan Pavlik

Country United States

Project Name cl-autowrap

Type of software library

General category other

LISP dialect Commmon Lisp

GitHub URL https://github.com/rpav/cl-autowrap

Did you start this project? Yes, all the code is written by me

Project Description I want to describe my project in this form.

Purpose cl-autowrap automates the generation of complete FFI
wrappers for C libraries using c2ffi and given a ".h" header
file. It also implements a new, simplified higher-level FFI on
top of CFFI-SYS. Wrapper authors can thus concentrate on
the "lispy" side of their API rather than maintaining low-level
definitions by hand.

Function Autowrap calls c2ffi (https://github.com/rpav/c2ffi) which
parses and generates JSON spec files for input C. It then
takes this information and generates a complete-as-
possible set of accessors and "safe"-but-thin wrappers for
records, types, functions, constants, externs, etc.

Motivation SWIG is broken beyond use. Wrapping things by hand is
more work and more error-prone than it should be. CFFI's
higher-level interface also is not terribly suited to generated
wrappers. I had written c2ffi and a prior wrapper generator,
c2ffi-cffi, but this didn't prove terribly useful in practice while
trying to wrap SDL2. Thus, cl-autowrap was born, and
https://github.com/lispgames/cl-sdl2 is one of a growing
number of projects which put it to practical use.

Audience Anyone who wants to provide FFI wrappers for C libraries in
1

https://github.com/rpav/cl-autowrap


Common Lisp.

Methodology Autowrap implements SFFI, a "simplified FFI" which provides
a fairly complete, if pragmatic, model of C's declarations.
While these are not particularly complicated, providing an
accurate model for unusual-but-legal cases is necessary, as
these tend to crop up regularly. Examples include
anonymous record members, type aliases with names
identical to the types aliased, or symbols which differ only by
case.

This is built on a few basic functions provided by the lower-
level CFFI-SYS package: allocate, free, memory-set, memory-
get, and foreign-funcall (not exact names). CFFI-SYS was
chosen since it already handled a number of Common Lisp
implementations, and provided the core set of functions
necessary for a higher-level interface.

Autowrap calls and parses the (JSON) output from c2ffi, and
writes appropriate SFFI declarations.

Also provided are a number of convenience functions for
handling common things such as enums, bitmasks, and the
like.

Conclusion This is already fairly complete. CL-SDL2 provides an in-
practice example of its usage. Other projects are currently
being wrapped and Autowrap is constantly being improved,
both to make it easier to use and to fix any bugs which are
encountered.

Currently, I'm working on adding C++ output to c2ffi, followed
by the "cxx2c" project, which will autogenerate a C library
with class and function wrappers with well-defined mangled
names. At this time, cl-autowrap will be extended to support
better syntax for calling C++ using these intermediate
libraries.

Note: while I started and have written the majority of this
project (cl-autowrap), it has received contributed code, most
notably from Samium Gromoff (https://github.com/deepfire).
This has been a project primarily of necessity and
pragmatism; I did not consider submitting it until literally the
last day of registration.

Build Instructions Get the latest desired revision from github; link the ASD
somewhere your ASDF can find it. Then:

(asdf:load-system 'cl-autowrap)

This does not technically require c2ffi: once a project has
".spec" files generated, no further use of c2ffi is necessary.
However, if you wish to wrap something, you will need
llvm/clang of at least version 3.3, and c2ffi:

https://github.com/rpav/c2ffi

Test Instructions You may attempt to wrap a C library following the
instructions in the README, if you have installed c2ffi.

Additionally or alternatively, you may load a project such as
CL-SDL2 which uses autowrap for definitions.

2



Execution Instructions This is a library project, and execution is not relevant.

Describe any bugs or caveats As of the Sept 30 cutoff, some known bugs may apply; it's
possible that C constants such as LDBL_MAX will not parse
due to an oversight in the fix. Additionally, c2ffi may produce
a bare "inf" instead of a quoted "inf", thus producing illegal
JSON for such values. This has since been fixed.

Additionally, c2ffi has only really been tested on x86_64
Linux. However, output has been confirmed as working on
32-bit architectures for at least CL-SDL2.

Official I have read rules and have abided by them.
I am 18 years of age or older.
I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

3


