
Lisp in Summer Projects Submission

Submission Date 2013-10-24 08:20:56

Full Name Evan Donahue

Country USA

Project Name Boris The (Web) Spider

Type of software library

General category library

LISP dialect Racket

GitHub URL https://github.com/emdonahu/boris

Did you start this project? Yes, all the code is written by me

Project Description I want to describe my project in this form.

Purpose Boris aims to make getting data off of a website and into a
running program as cheap, reliable, maintainable, verifiable,
extensible, and reusable as possible.

Function Boris defines an embedded language for guiding a web
client through a series of web pages, collecting data and
returning results to the host program for immediate use.

Motivation I have seen too many good ideas shelved do to the hassle
of managing complex crawls through messy markup. With
Boris, I hope to enable myself and others to get up and
running quickly with programs that interact dynamically with
web content.

Audience Boris is for programmers who want to write programs that
interact with the web without having to track cookies and
connections, parse markup, or manage intermediate results;
this might include programmers working on web service
mashups, text-mining research, or web data visualization.

Methodology Boris has three core concepts: webs, spiders, and flies. A
web is a program structure defining the urls to visit and the
data to extract. A spider is a function that interprets the web
and performs the crawl, handling concerns external to the
web logic such as caching, robots.txt, and timing policies.

1

https://github.com/emdonahu/boris


The flies are the data extracted by the spider as it traverses
the web and returned to the host program (via return value,
yield, etc.). 

A web is a tree in which each node is a function. The
function accepts the current crawl state (containing the
current page, environment bindings, and position in the web)
and returns a list of "next" states. The spider then executes
the subsequent portions of the web for each of these states
in turn. In this way, Boris forms can inherently express
concepts such as branching (an empty list prunes the sub-
tree beneath the current node) and iteration (a full list
repeats the sub-tree code for each state). This way,
concepts such as "follow every link in the navigation div"
have natural expressions in Boris.

All of Boris' basic web forms translate to one of four
semantic operations. Navigation forms request new pages
from external sources, such as by fetching a document from
the web. Extraction forms return data discovered during the
crawl to the host program. Binding forms bind identifiers in
the spider's memory environment for use later in the crawl,
which can be useful for assembling extractable entities
whose data is spread across several pages. Control forms
dynamically alter the sub-trees the spider will visit next,
allowing for control constructs such as recursion, which can
concisely express common tasks like pagination and full-site
mirroring. Because a web is a simple tree of functions,
however, it is possible to add new forms at runtime simply
by modifying the tree.

Conclusion The primary goal of this iteration of Boris is to devise a web
spider definition language that is sufficiently expressive to
handle a wide range of web crawling tasks easily and
efficiently. This goal seems to have been reached. Boris'
primary area for growth right now is its development story.
Boris is designed to play target language for an eventual
textual (and possibly even graphical) browser-like interface
capable of turning exploratory web browsing directly into
runnable spidering code, while still preserving the ability to
escape to Boris' more complete programming model when
the affordances of the browser fail.

Build Instructions Have Racket 5.9 installed.

Run on the command line:
raco pkg install github://github.com/emdonahu/boris/master

Test Instructions Unit tests can be run with:
raco test -px boris

More involved demos can be found in the tests/boris folder,
and run with:
racket

Execution Instructions Being a library, the execution instructions are the same as
the test instructions. Additional documentation can be found
at http://emdonahu.github.io/boris/index.html

Describe any bugs or caveats Some of the tests are network tests, and so depend on port
60415 being clear for a local web server to run.

2



Screen shots

boris2.png

borisscreen.png

Official I have read rules and have abided by them.
I am 18 years of age or older.
I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

3

http://www.jotform.us/uploads/gadmin/32729091727157/248426455953763822/boris2.png
http://www.jotform.us/uploads/gadmin/32729091727157/248426455953763822/borisscreen.png

