Lisp in Summer Projects Submission

Submission Date

Full Name

Country

Project Name

Type of software

General category

LISP dialect

GitHub URL

Did you start this project?
Project Description

Purpose

Function

Motivation

Audience

2013-10-24 15:35:47

Pius von Daniken

Switzerland

Celine - cel-shading raytracer written in clojure
command-line/terminal app

art

Clojure

https://github.com/31415us/celine

Yes, all the code is written by me
| want to describe my project in this form.

Celine is a simple ray tracing program. Instead of using
state-of-the-art realistic shading techniques it implements a
very simple cel-shader (see:
https://en.wikipedia.org/wiki/Cel_shading)

Celine permits to render a scene defined in the core.clj file
and outputs a .png file containing the rendered scene.
The scene can be built out of several geometric primitives,
at the moment there are spheres, planes, triangles and
triangle-meshes implemented.

There seem to be plenty of resources on how to implement
a ray-tracer in a standard object-oriented and imperative
fashion, but only few seem to have considered an
implementation in a functional environment.

Similarly cel-shading doesn't seem to be as popular as more
traditional shading techniques.

The main motivation was to explore these two fields without
much outside help and at the same time learn a lisp.

There is no specific target audience. As the code is still
relatively raw Celine doesn't yet permit people unfamiliar
with the topic to explore ray tracing in an intuitive fashion.
People looking for a simple implementation of cel-shading in
a ray-tracing context might be interested to look at the code

1

https://github.com/31415us/celine

Methodology

as there aren't a lot of resources to be found (there are
some nice tutorials on how to implement it in OpenGl).

Quick overview of ray-tracing and cel-shading:

Ray-tracing:

Lightsource

Image Plane o
Eye/Camera |

I _

R foeeee>] |
Ray |||

| Object in Scene

In its simplest form a ray-tracer shoots a ray from the eye of
the observer through some pixel position in a virtual image
plane and tests for intersections in the scene. From the
intersection point you get the base color of the pixel. From
there you can cast several new ray to calculate reflections
and shadows. To see if some intersection point lies in the
shadow of an other object you simply cast a new ray in the
direction of the light source and test for collision with other
objects. Similarly for reflections you calculate the reflection
angle after some shading model (e.g. phong-shading).
Implementing reflections was never a goal of Celine and
they're therefore not present in the current implementation.
Shadows we're planned but not yet implemented.

Cel-Shading:

As opposed to more realistic-looking shading models cel-
shading gives the scene a comic book style look and feel
(and is therefore often also called toon-shading).

To get this look you try to get hard edges between different
shades of the same color instead of more soft gradients.
This is achieved by looking at the angle between the normal
vector at the intersection point and the position of the light
source with respect to the intersection point. You then
brighten or darken the base color as a function of this angle.
Normally you also want to get (black) outlines around
rendered objects

(to emulate pen strokes), unfortunately it was hard to find
any resources on how to implement this in a ray-tracer and
is not implemented (yet).

Parallelism:

Knowing that we can compute the color of every pixel
independently of the others, ray-tracing can in theory be
easily parallelized. Unfortunately this is not implemented yet.

Geometry:

All geometric computations are made in standard euclidean
3D space. The geometry.clj module implements standard
vector algebra operations on 3D vectors and offers several
geometric primitives such as spheres, planes and triangles.
The workhorse of any ray-tracer are its ray-object collision
detection functions. In this domain Celine has still a lot of
space for improvement such as the use of standard octree
space partitioning to avoid unnecessary collision tests.

2

Conclusion

Build Instructions

Test Instructions

Execution Instructions

Describe any bugs or caveats

Celine does not depend on any external library other than
Clojure and Java standard libraries and is entirely built from
scratch.

In its current state Celine works as a very simple ray-tracer
although much of the planned functionality is not yet
implemented.

The main drawback at the moment is that people unfamiliar
with the code

will probably find it very hard to interact with Celine, as there
is no way to do so other than manually modifying the core.clj
file to change the scene to render.

Furthermore the current implementation is very inefficient as
it does not yet take advantage of the possibility to parallelize
and handles spacial information for ray-object collisions very
poorly (at the moment it checks collision between every ray
and every object which could be avoided).

On the other hand it lends itself well for inspiration for future
better implementations as there aren't many resources on
the subject of the combination of ray-tracing and cel-
shading.

Future improvements:

- shadows!

- parallelize

- more efficient space partition and ray object collision
detection

- better Ul

It's a Leiningen project so to run just do:

cd ~/path/to/celine/
lein compile

There are no unit-tests implemented.

To run the code just do:
lein run

in the project-folder
In the version uploaded it should render
Jobjlicosahedron.obj in blue on black background

The code is extremely slow so don't

try to render anything with a lot of geometric primitives.
The .obj parser is very rudimentary and will probably fail on
most input.

DONT try to render the Jobj/teapot.obj:

due to the inefficient implementation

it takes forever to render!

Screen shots

Official

icosahedron.png

two-spheres.png

I have read rules and have abided by them.

I am 18 years of age or older.

I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

http://www.jotform.us/uploads/gadmin/32729091727157/248452546802223302/icosahedron.png
http://www.jotform.us/uploads/gadmin/32729091727157/248452546802223302/two-spheres.png

