
Lisp in Summer Projects Submission

Submission Date 2013-10-23 18:30:41

Full Name Lars Tveito

Country Norway

Project Name Shared buffer

Type of software other

General category development tool

LISP dialect Emacs Lisp

GitHub URL https://github.com/larstvei/shared-buffer

Did you start this project? Yes, all the code is written by me

Project Description I want to upload a free-form 3-4 page PDF composition.

Upload 3-4 page detailed PDF shared-buffer-description.pdf

Build Instructions (This is also covered in README.md)

Client:
To install the Emacs extension just download the shared-
buffer.el and store it in your load-path.

Server:
You will need a common lisp interpreter and quicklisp
installed. SBCL is the only implementation that has been
tested, and therefor also recommended. Download the
shared-buffer-server.lisp and store it anywhere you like.

Test Instructions No tests provided.

Execution Instructions (This is also covered in README.md)

Client:
Once shared-buffer.el is loaded you can start sharing a
buffer by interactively running the command:

M-x sb-share-this-buffer RET
1

https://github.com/larstvei/shared-buffer
http://www.jotform.us/uploads/gadmin/32729091727157/248376641161985642/shared-buffer-description.pdf


Host: virvel.de RET
Key: this-is-a-key RET

To connect to a shared buffer, run the following command:

M-x sb-connect-to-shared-buffer RET
Host: virvel.de RET
Key: this-is-a-key RET

Server:
Running SBCL type

CL-USER> (load "/path/to/shared-buffer-server.lisp")

Describe any bugs or caveats If shared buffer goes out of sync it is recomended to use

M-x sb-disconnect RET

or just kill the buffer (C-x k).

For further information see the project description.

Screen shots
Screen Shot 2013-10-24 at 12.30.08 AM.png

Official I have read rules and have abided by them.
I am 18 years of age or older.
I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

2

http://www.jotform.us/uploads/gadmin/32729091727157/248376641161985642/Screen Shot 2013-10-24 at 12.30.08 AM.png


Shared Buffer

Lars Tveito

October 23, 2013

1 Purpose

Shared buffer is a project that enables real-time collaborative editing in
Emacs. It is split up in two parts, client and server. The client is an Emacs
extension entirely written in Emacs Lisp. The server is a small Common
Lisp program; there is currently a server running on ’virvel.de’.

2 Function

In Emacs one is simply able to share a buffer and connect to a buffer that is
already shared. This is done by requesting a connection to a shared buffer
server. Once a connection is established all changes in your buffer is sent to
the server. The server simply redirects these messages to all Emacs clients
connected to that shared buffer.

3 Motivation

Working on a small scale project with friends, fellow students and coworkers
was not simple enough to do with Emacs. Having recently started learning
Lisp, it seemed like a fun and ambitious project.

1



4 Audience

Initially me, and whomever I wanted to work with. After realizing I’d might
actually make it work, I think it can be useful for anyone using Emacs in
collaboration with others. It is written with small scale software projects in
mind, but can be used for all kinds of text editing.

5 Methodology

The project is divided into two parts, a client and a server. The server
is written in Common Lisp, and it’s main job is to allow the clients to
communicate. The client is an Emacs extension written in Emacs Lisp which
mainly send changes to the server, or receives changes from the server.

The client may ask to establish a new session or connect to an existing one.
If a new session is required, the client provides a key. This key is used
by the server as key in a hash table, containing lists of clients. A client
asking to connect to a shared buffer is simply added to the list of clients that
corresponds to the given key.

When a new client connects to an already established session, a single client
is asked by the server to send it’s entire buffer content. This package is
marked as being for new clients only. From that point on they should keep
synced. The session is kept alive as long as there are clients connected to it.

The main challenge in this project was to figure out how to keep several
separate Emacs buffers mirrored. This is resolved by sending a message for
every command a user invokes (this is done by adding functions to after-
change-hook and post-command-hook, both built-in variables in Emacs).
These messages will dictate a change that happened in a buffer. Assuming
the shared buffers are identical to the one sending the message prior of that
change, we can safely apply that change to any client that receives this
message.

A problem arises if our assumption is wrong. The most common situation
is that a client has made changes in a buffer between the time the message
was sent and received. The point where the change should be applied is then
calculated by using the difference in the size of the buffer the message was
sent from, and the size of the buffer receiving the message. This works in
most cases.

2



6 Conclusion

After a summers worth of coding I am glad to say that the core functionality
is up and running. It is fast and lightweight. A lot of time has gone into
finding the right solution to the big problems, and finding good workarounds
for Emacs’s many idiosyncrasies. I believe the project has great potential.

The main issue that needs fixing is how to detect and resolve problems with
synchronization. As of now, once buffers go out of sync, there is really no
other solution than to disconnect and reconnect. There are also quite a few
bugs triggered by Emacs’s many features and extensions, and I’m hoping to
resolve these after the competition is over.

I plan to make Shared buffer more user friendly, by supplying a Emacs minor
mode accompanied by a chat feature. When these things are in order it will
be released in melpa, and will hopefully be found useful.

3

http://melpa.milkbox.net/#/


Screenshot:

Text


