
Lisp in Summer Projects Submission

Submission Date 2013-10-20 07:43:10

Full Name Dogadailo Dmytro Victorovich

Country Ukraine

Project Name MetaJS (knowledge-oriented programming language)

Type of software command-line/terminal app

General category lisp compiler/interpreter

LISP dialect other

GitHub URL https://github.com/dogada/metajs/tree/LISP

Did you start this project? Yes, all the code is written by me

Project Description I want to upload a free-form 3-4 page PDF composition.

Upload 3-4 page detailed PDF metajs_lisp.pdf

Build Instructions MetaJS requires Node.Js for development environment. For
installation instructions please look at
https://github.com/dogada/metajs/tree/LISP#how-to-install-
and-try-metajs

Once you have MetaJS installed, please run `make` in the
root project folder. MetaJS will rebuild itself and run test
suite.

Test Instructions To run unit tests please run:
$ make test
or
$ metajs -x test/index.mjs

To check unit tests for errors please use:
$ metajs --lint test/index.mjs

Execution Instructions To start a REPL:
$ metajs

To execute a MetaJS file:
1

https://github.com/dogada/metajs/tree/LISP
http://www.jotform.us/uploads/gadmin/32729091727157/248078590901332506/metajs_lisp.pdf

$ metajs -x test/index.mjs

To compile a file to stdout:
$ metajs test/logos.mjs

Describe any bugs or caveats MetaJS is in alpha stage but can recompile itself already.
For typical use cases it should work without errors. Compiler
not always clearly report found errors unfortunately.

Screen shots
metajs_logos.png

metajs_repl.png

Official I have read rules and have abided by them.
I am 18 years of age or older.
I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

2

http://www.jotform.us/uploads/gadmin/32729091727157/248078590901332506/metajs_logos.png
http://www.jotform.us/uploads/gadmin/32729091727157/248078590901332506/metajs_repl.png

MetaJS

Knowledge-oriented programming language

Dmytro Dogadailo
October, 2013

http://metajs.coect.net

http://metajs.coect.net/

Purpose
MetaJS is knowledge-oriented programming language. MetaJS compiler can generate source code,
intentionally missed by programmer. This approach leads to loosely coupled and highly dynamic
programs. MetaJS is a dialect of Lisp and provides many of the typical Lisp features including
powerful macro system. It compiles to Javascript without runtime dependencies.

Function
Typical usage scenario: signature of a library function is changed but all arguments for new version
of the function can be found in the call context. MetaJS can adapt all calls of such function to the
new signature automatically. A programmer starts to use less nouns (local variables and function
arguments) and more verbs (function calls). MetaJS compiler finds what does the programmer mean
from semantic model of the program and surrounding context.

Motivation
Today compilers analyze only the grammar of the language and ignore the semantics of each
specific program. As a result, we get the source code with high level of redundancy. With the
increasing size of the program this naturally leads to difficulties in its support. Major changes in the
application source code become virtually impossible without causing of new bugs and regressions.

Audience
The complexity of software and user's expectations increase much faster than programmer's
productivity. MetaJS attempts to close this gap and offers to small teams and individual
programmers a tool that allows to do more for less time. Semantic-aware compiler orthogonally
combines with traditional Lisp meta-programming and provides new experience for all
programmers who value own time.

Methodology
In addition to traditional macros that transform program at read- and compile-time MetaJS uses
semantic transformations that runs after read- and compile-macros. In MetaJS functions can have
required and optional parameters. When MetaJS compiler finds a function call without a required
parameter it attempts to “resolve” it to make the valid function call.

The compiler tries to find all symbols and compound forms that can be used instead of missed
function argument. The compiler replaces missed function argument only when it finds exactly one
valid substitution. When valid substitution is not found or found more than one, compiler reports an
error that programmer need to resolve manually. The same approach is used in the version control
systems. Most of time merges of different code branches are done automatically, but if there are a
merge conflict – programmer need to resolve it manually or use different merge algorithm.

MetaJS uses two classes of semantic transformation: symbolic and entitative. During symbolic
transformations compiler uses symbols available in the lexical scope of the function call instead of
missed argument of the function. To qualify a symbol for the substitution of the missed function
argument MetaJS tries to match name and meta information of the missed argument and each
symbol available in the lexical scope of incomplete function call. Name of the argument can be
matched with meta of context symbol and vise versa forming four possible types of combinations.

Let's see an example of symbolic transformation when name of missed function argument is
matched with meta type of context symbol. On the left is MetaJS code and on the right is JavaScript
code generated from MetaJS code. Result of semantic transformation is highlighted with red color.
You can check this and next examples right inside your browser on the http://metajs.coect.net/.

(defn get-user-timeline (username)

 #"$username timeline")

(let* (u:username "dogada")

 (get-user-timeline))

var getUserTimeline = (function(username) {

 return ("" + username + " timeline");

});

(function(u) {

 return getUserTimeline(u);

})("dogada");

Required argument username of the function get-user-timeline is missed in the function call.
MetaJS uses local variable u, because it's declared with meta type username. The code
u:username defines symbol u and declares that it is related to something called username. Meta
types are not need to be defined at all. Compiler uses meta types and entities to build semantic
model of the program.

Entities are defined with (entity) macro and used solely by compiler to understand relations
between symbols. Entities are not types in statically-typed languages sense and have no
corresponding JavaScript code. Entities are main building block of semantic model of the program.

Let's see an example of an entitative transformation. Such transformations always use an explicitly
defined entity to find a valid relation between symbols available in the lexical scope of function call
and missed function argument. Entities may define simple relation like property relation, for
example (has username). Custom relation able to emit any form instead of missed argument, for
example (rel username `(. ~sym 'session ~rel)), where sym is actual symbol matched to the entity
and rel is target itself.

(entity request

 "Entity of demo web request."

 (has username))

(defn get-user-timeline (user-id:username)

 #"$user-id timeline")

(let* (req:request {username: "dogada"})

 (get-user-timeline))

var getUserTimeline = (function(userId) {

 return ("" + userId + " timeline");

});

(function(req) {

 return getUserTimeline(req.username);

})({username: "dogada"});

Required argument user-id of the function get-user-timeline is missed in the function call. MetaJS
uses property username of local variable req, because it's declared with meta type request and
entity request declares relation between request and username entities and user-id argument
declared with meta type username.

http://metajs.coect.net/

You can find examples of all 8 types of semantic transformations used by MetaJS in the
http://metajs.coect.net/pdf/metajs_semantic_code_transformations.pdf.

Conclusion
MetaJS is implemented in MetaJS, so even if it's still in alpha stage it's quite feature complete
already. Famous Lisp macro system allows to add more features without need to change language
itself. Anyone can try it without leaving a browser on http://metajs.coect.net/ or install as NodeJs
module.

It's easy to predict that in large programs symbols and entities with same name may have different
meaning in different source files even inside single project. When you import external libraries, you
may expect even more name conflicts. MetaJS plans to solve this problem with namespaces and
using of fully qualified names of entities inside compiler. A programmer can import and alias
entities from other modules exactly like symbols are imported between namespaces.

Next obvious area of improvement is meta types inheritance and various checks of code validity
based on semantic model of program.

The final goal is to make a compiler that can learn programmer's style at least particularly. A
programmer concentrates own efforts on domain models design and architecture of the program. A
programmer tells to MetaJS compiler what to do and teach it to understand program's entities and
relations between symbols. Computer in real-time mode analyzes semantic model of the program,
compares it with the code that programmer types and provides immediate feedback rather than
shows blinking cursor.

http://metajs.coect.net/
http://metajs.coect.net/pdf/metajs_semantic_code_transformations.pdf

dogada@i3:MJS$ m e t a l s
meta ls 0 . 1 . 1 TEPL (T r a n s l a t e E v a l P r i n t L o o p)
meta ls> (d e i n s h o w - t i m e l i n e (use rname l i m i t : 1 0) # " To p $ l i m i t e n t r i e s i n $ u s e r n a m e ' s t i m e l i n e . ")
meta ls> (s h o w - t i m e l i n e " J o h n ")
'Top 1 0 e n t r i e s i n J o h n \ ' s t i m e l i n e . '
meta ls> (s h o w - t i m e l i n e " J o h n " 5)
'Top 5 e n t r i e s i n J o h n \ ' s t i m e l i n e . '
meta ls> (s h o w - t i m e l i n e)
<unknown>:1:1 E r r o r (2) : u s e r n a m e i s r e q u i r e d f o r s h o w - t i m e l i n e
meta ls> (l e t use rname " J o h n " (s h o w - t i m e l i n e))
'Top 1 0 e n t r i e s i n J o h n \ ' s t i m e l i n e . '
meta ls> (l e t use rname " J o h n " l i m i t 3 . 1 4 (s h o w - t i m e l i n e))
'Top 1 0 e n t r i e s i n J o h n \ ' s t i m e l i n e . '
meta ls> (d e f a c t o r s [" N e o " " T r i n i t y " " M o r p h e u s "])
meta ls> (d e f [n e o t r i n i t y morpheus] a c t o r s)
meta ls> [n e o t r i n i t y morpheus]
[' N e o ' , ' T r i n i t y ' , ' M o r p h e u s '
meta ls> (d e f m a c r o when (x & c o d e) ' (i f —x (d o —@code)))
meta ls> (l e t e a r t h - m o v e s t r u e (when e a r t h - m o v e s " A n d y e t i t m o v e s ! "))
'And y e t i t m o v e s ! '
meta ls> (p r o c e s s . h r t i m e @1)
172959867
meta ls> (4- 2 2)
4
meta ls> (e v a l (c o m p i l e (r e a d " (+ 2 2) ")))
4
meta ls> B y e !

(de fn c h e c k - c a l l (name a r g s)
(d e f name* (t o k e n - v a l u e * name)

expected (f i n d - f n - s i g n a t u r e n a m e *))
(c h e c k - c a l l - p a r a m s name a r g s e x p e c t e d))

(de fn e n t i t y - r e s o l v e (a r g)
Use e n t i t i e s a s s o c i a t e d w i t h a r g t o f i n d s u b s t i t u t i o n f o r m i s s e d a r g u m e n t . "

(d e f e n t i t i e s (f i n d - e n t i t i e s a r g . t o k e n)
bound (f i l t e r (m a p e n t i t i e s (f (e) { e n t i t y : e s y m b o l s : (f i n d - s y m b o l s [e . n a m e]) 1))

(f (e s) (n o t - e m p t y ? e s . s y m b o l s))))
(merge (map bound (f (e s)

(map e s . s y m b o l s # (e s . e n t i t y . c o d e (. % ' n a m e)
[' q u o t e e s . e n t i t y . t o k e n]))))))

(de fn s y m b o l - r e s o l v e (a r g)
"F ind i n t h e c u r r e n t l e x i c a l s c o p e symbo l s w i t h a r g ' s name o r me ta t y a e . "
(map (f i n d - s y m b o l s (g e t - t o k e n - e n t i t i e s a r g . t o k e n)) # (g e t % ' n a m e)))

(de fn r e p o r t - r e s o l v e - e r r o r (a r g f n - t o k e n f o r m s)
"Show a l l p o s s i b l e c a n d i d a t e s f o r r e s o l v i n g t h e m i s s e d a r g u m e n t o f a f u n c t i o n . "
(d e f name a r g . n a m e

fn-name (t o k e n - v a l u e * f n - t o k e n)
r e s o l v e r s ((m a p f o r m s c o m p i l e - o n e) . j o i n " , "))

(dump-scope- logos)
(l i n t - m a n y - c a n d i d a t e s # " To o many c a n d i d a t e s f o r $name i n $ t n - n a m e : $ r e s o l v e r s . " f n - t o k e n)
n u l l)

(de fn r e s o l v e - a r g (a r g f n - t o k e n)
"Replace m i s s e d a rgumen t o f a f u n c t i o n w i t h a f o r m o r r e p o r t a n e r r o r . "
(d e f f o r m s (c o n c a t (s y m b o l - r e s o l v e) (e n t i t y - r e s o l v e))

name a r g . n a m e)
(i f (c o n t a i n s - o n e ? f o r m s) (f i r s t f o r m s)

(con ta ins -many? f o r m s) (r e p o r t - r e s o l v e - e r r o r)))

(defmacro e n t i t y (name & r e l s)
" D e f i n e e n t i t y i n t h e c u r r e n t l e x i c a l s c o p e . "
(d e f d o c " ")
(when (q u o t e d ? (f i r s t r e l s))

(s e t [d o c r e l s] (f r e s t r e l s)))
((g e t - s c o p e) . s e t - e n t i t y name r e l s d o c)
u n d e f i n e d)

-UU : F l l o g o s . m j s 6 5 % (9 7 , 0) G . t . t e r (C l o j u r e P a r e d i t F l y m a k e v l Wrap F i l l) -

Screenshots, REPL and logos:

Text

