
Lisp in Summer Projects Submission

Submission Date 2013-10-19 17:11:19

Full Name Jovan Trujillo

Country US

Project Name Vacietis

Type of software API

General category development tool

LISP dialect Commmon Lisp

GitHub URL https://github.com/navoj/Vacietis

Did you start this project? No, I'm modifying or extending an existing project.

Which file or directory contains
the majority of your work?

Vacietis/libc/include/Sys/time.lisp

Briefly describe your
modifications

Vacietis is a C interpreter for Common Lisp. It is still missing
a few important C libraries. I worked on getting a basic
time.h stub working. It's not complete. I didn't have much time
to work on the project :-(

Project Description I want to describe my project in this form.

Purpose Vacietis is a C compiler for Common Lisp Systems. You can
read standard C code and Vacietis will translate the code
into Lisp functions. There is also the possibility of compiling
the code into an executable.

Function You will need clisp and quicklisp installed for this to work.
Download Vacietis in your quicklisp/local-projects folder.
Run (ql:quickload "vacietis")
Load C file with (vacietis:load-c-file "code.c")
Run C code with (vacietis:run-c-program *package*)
Compile to an executable using the vcc program.

Motivation I want Lisp to take over the world so I thought it would be
useful to have a C interpreter in Lisp to make future projects

1

https://github.com/navoj/Vacietis


easier. I want to be able to do everything in Lisp on any
system so gluing existing source code into Lisp helps make
that possible. I imagine it would be useful to speed up
development of the Movitz lisp kernel into a full operating
system by writing wrappers around Linux drivers for various
hardware. Vacietis could also be a very flexible C
development environment for dynamically modifying and
debugging C code. But my personal reasons are to create a
more homogeneous software development environment
where I can take anybody's work and easily integrate it into
a Lisp platform regardless of what languages and operating
systems they are using.

Audience Software developers who want to do more things in Lisp with
less effort.

Methodology Below is Vladimir Sedach's explanation of how to use
Vacietis. From examining the code he ported the zeta-c
compiler to common lisp and rewrote the parser to utilize
readtables. 

Vacietis is a C compiler for Common Lisp systems.

Vacietis works by loading C code into a Common Lisp
runtime as though
it were Lisp code, where it can then be compiled or evaled.
The loaded
C code has the same function calling convention as regular
CL code and
uses the same numerical representations. C memory is
backed by regular
Common Lisp arrays.

Vacietis comes with a libc implemented in portable Common
Lisp.

* INSTALLING:
----------

You can obtain Vacietis from github:
git clone https://github.com/vsedach/Vacietis.git

All Vacietis dependencies are available via Quicklisp
(http://www.quicklisp.org/). If you put Vacietis in
quicklisp/local-projects/ you can just load it with
(ql:quickload "vacietis")

* USAGE:
-----

C code can be read in the same way as regular Lisp code
by using
readtables:

(let ((*readtable* vacietis:c-readtable)
(vacietis:*compiler-state* (vacietis:make-compiler-state)))
(read ))

The Vacietis reader keeps track of type and preprocessor
macro declarations in a compiler state object bound by
*compiler-state*. This mechanism is exposed to make it

2



possible to
create things like C REPLs.

To simplify loading C files, a convenience function is
provided that
sets up the readtable, compiler state, and additional
debugging
information before calling LOAD:

(vacietis:load-c-file "/foo/bar/file.c")

* COMPILER EXECUTABLE:
-------------------

The system vacietis.vcc produces a toy C compiler
executable that can
take a single-file C program and produce an executable
program. Currently it needs CCL, CLISP, or SBCL to work.
Sample run:

(ql:quickload "vacietis.vcc") will produce the executable
vcc/vcc in
the Vacietis source directory.

$ ./vcc ../test/programs/hanly-83-scanf/main.c

Produces the file a.out in the current directory.

$ ./a.out
Enter 8 numbers separated by blanks or s
>

* TECHNICAL DETAILS:
-----------------

Vacietis uses the memory model of Common Lisp as is, so
sizeof of the
primitive data types (char, int, float etc.) is all 1. This
shouldn't
be a problem for most C code, but some C programs claim
to be portable
while making assumptions that things can be cast into an
array of
chars to be manipulated. These programs won't work under
Vacietis.

The basic idea for the Vacietis runtime and memory model
comes from
Scott L. Burson's Zeta-C compiler for Lisp Machines:
http://www.bitsavers.org/bits/TI/Explorer/zeta-c/

The technique for representing pointers to arbitrary C
lvalues as
closures was first demonstrated by Oleg Kiselyov:
http://okmij.org/ftp/Scheme/pointer-as-closure.txt

The idea for a combined single-pass
preprocessor/tokenizer/parser
comes from Fabrice Bellard's TCC: http://bellard.org/tcc/

* OBTAINING CODE AND HELP:
3



* OBTAINING CODE AND HELP:
-----------------------

The official Vacietis repository is at:
https://github.com/vsedach/vacietis

There is a Vacietis mailing list on the web:
http://groups.google.com/group/vacietis

Bug reports can be sent to the mailing list:
http://groups.google.com/group/vacietis
the github issue tracker:
https://github.com/vsedach/vacietis
or directly to the author:
vsedach@gmail.com

* UNIT TESTS:
----------

(ql:quickload "vacietis.test")
(vacietis.test:run-tests)

The Vacietis test suite includes a variety of code that tests
the
compiler and libc.

* TODO:
----
- pointer scaling
- enums: assignment of arbitrary values to enum labels
- struct call by value
- pass arguments to main()
- implement overloading class scope correctly (see H&S p.
147)
- libc stdio: binary streams
- libc stddef: offsetof
- libc signal
- libc stdlib: div/ldiv, srand, exit cleanup, bsearch, qsort
- libc time
- libc setjmp

* THINGS THAT PROBABLY WON'T BE SUPPORTED:
---------------------------------------
- trying to cast arrays of chars to other types (mmap)
- any kind of GCC extension

* LICENSING INFORMATION
---------------------

Vacietis is authored by Vladimir Sedach ; the
latest copyright year is 2012.

Vacietis is licensed under the LLGPL (see the file LICENSE
included
with the distribution for details).

Portions of the Vacietis libc may be derived from Zeta-C
(released
into the public domain by its author, Scott L. Burson) and Erik
Andersen's LGPL-licensed uClibc

4



(http://www.uclibc.org/)

Conclusion I did not have much time to improve Vacietis this summer.
From Vladimir's TODO list I started tackling an
implementation of the time.h library. It is not complete and
doesn't follow the C standard correctly yet. I would like to
complete his TODO list and add the possibility of reading
make files into lisp for compiling large C programs. Other
limitations that need to be addressed is porting the code to
other implementations of common lisp. Right now the
software is known to only work with CLisp and nothing else.
The vcc compiler Vladimir created isn't working right now
either with the latest version of CLisp. This needs to be
fixed as well.

Build Instructions You need CLisp 2.48 and quicklisp installed. Download
Vacietis into your quicklisp/local-projects folder and run in
clisp: (ql:quickload "vacietis")

Test Instructions Write a simple helloworld.c program to your favorite path.
In clisp, call (vacietis:load-c-file "path-to-helloworld.c")
In clisp, now run (vacietis:run-c-program *package*)

Describe any bugs or caveats time.h doesn't work because I do not fully understand how
the library development is structured.

Screen shots

Untitled.png

Official I have read rules and have abided by them.
I am 18 years of age or older.
I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

5

http://www.jotform.us/uploads/gadmin/32729091727157/248026279762725872/Untitled.png

