
Lisp in Summer Projects Submission

Submission Date 2013-10-01 17:38:26

Full Name Emanuele Acri

Country Italy

Project Name prolog-talk

Type of software command-line/terminal app

General category other

LISP dialect Commmon Lisp

GitHub URL https://github.com/crossbowerbt/prolog-talk

Did you start this project? Yes, all the code is written by me

Project Description I want to describe my project in this form.

Purpose Implement a parser for natural English language and
provide a free grammar dictionary.

Function The project parses English sentences and outputs parse
trees.

The user write a sentence in English and receive a tree
representation, which contains grammatical and syntactical
informations.

A grammar dictionary is also provided, 110000 word (not
counting plurals and conjugations of verbs), for AI
programming.

Motivation Few dictionaries are available without royalties. The project
provides a decent one.

In future more programs will accept natural language as
input, and the project provides an easily scriptable parser
for it.

Personal objectives:

1

https://github.com/crossbowerbt/prolog-talk


Improve my knowledge of linguistics, and apply my studies in
a concrete program.

The concept of macro-generated prolog was intriguing.

Audience The dictionary is for programmers of AI applications. It will
remain free to use. The format is easily adaptable even for
different programming languages.

The parser is a base to build more complex tools, some of
which are described in the Conclusion section.

Methodology The main program is based on a dictionary that contains
word categories (a word can be in more that one category)
and forms (i.e. plural for nouns, conjugations for verbs).

Gambol provides an implementation of prolog in common
lisp, where facts and rules can call lisp functions and vice-
versa.

Using these resources, a hierarchal network of finite state
automata (FSA) parse English sentences into syntactically
correct syntagms.

"Hierarchal" since they can be nested into each other. This
makes the structure roughly equivalent to context free
grammars.

"Syntactically correct" because there is no semantic
knowledge in the system. Semantic ambiguity is possible.

---

Implementation:

- A simple language describes the automata. It's
implemented using a macro that generates "lispy" prolog
rules. I choose prolog because automatic backtracking is
suited for the task.

- FSA used are not basic ones: I added jumps, to simplify
networks, and a system similar to "difference lists" to
manage sentence gaps.

On this last point, let me clarify with an example:

"The fox which _ jumped onto the log is red."

The *dependent* sentence has no subject: there is gap.

Context free grammar are not able to manage gaps very
well.
FSA used by the program are augmented with some
instructions (the :if, :if-not, :set, :unset modifiers), to manage
this.

To understand the program a little knowledge of how prolog
works is required.

---

The main challenge was building the dictionary: 110000
words, not counting different forms, from a 1913 text.

2



Programming a satisfying automata network proved a little
challenging, like implementing a (simple) way to manage
gaps.

Conclusion Accomplishments:

- A decent English dictionary is now available, usable in a lot
of situations.

- The parser works for a useful range of sentences, and it
is good enough to build friendly user interfaces. 

Limitations:

- The system is slow, and uses a too much memory:

Gambol is not optimized for large database, and do not
support tail-call optimizations (the main part of the program
is recursive).

It also use continuations to back-track. A lot of unnecessary
state information is saved in memory.
(a possible solution is to write a simple prolog in lisp, with
the objective of being directly optimizable by the compiler.)

- The parser can be extended to recognize more types of
sentences, possibly even paragraphs.

- Adding Semantic and pragmatic informations can reduce
ambiguity.

Future directions:

I plan to work on the following projects:

- A non literary translation tool: a based on the meaning of
sentences, not on the single words.

- A Siri-like interface, that match user input, using specific
features of the parse trees (thus permitting a flexible way
for the user to give commands to the machine).

Build Instructions The SBCL common lisp implementation is recommended.

The only dependency is gambol. It can be installed using
quicklisp, or the old, but still working, asdf-install:

(require 'asdf)
(require 'asdf-install)
(asdf-install:install "gambol")

Execution Instructions Inside the project directory:
sbcl --script ./prolog-talk.lisp

Then write your sentences when the prompt appears.

A detailed usage example is on the project site.

Describe any bugs or caveats Do not try the "multiple trees" option for complex sentences,
unless you have a *lot* of memory available.

3



Screen shots

sentence.png

usage.png

Official I have read rules and have abided by them.
I am 18 years of age or older.
I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

4

http://www.jotform.us/uploads/gadmin/32729091727157/246472706251770413/sentence.png
http://www.jotform.us/uploads/gadmin/32729091727157/246472706251770413/usage.png

